Predicting Kováts Retention Indices Using Graph Neural Networks
نویسندگان
چکیده
The Kováts retention index is a dimensionless quantity that characterizes the rate at which compound processed through gas chromatography column. This independent of many experimental variables and, as such, considered near-universal descriptor time on indices large number molecules have been determined experimentally. “NIST 20: GC Method/Retention Index Library” database has collected more importantly, curated subset these compounds resulting in highly valued reference database. data library form an ideal set for training machine learning models prediction unknown compounds. In this article, we describe graph neural network model to predict NIST and compare approach with previous work [1]. We mean unsigned error 28 units compared 44, putative best result using convolutional also incorporates estimation scheme based group contribution achieves 114 data. Our method uses same input source approach, making its application straightforward convenient apply existing libraries. results convincingly demonstrate predictive powers systematic, data-driven approaches leveraging deep methodologies applied chemical 20 outperform models.
منابع مشابه
Estimation of Kováts Retention Indices Using Group Contributions
We have constructed a group contribution method for estimating Kováts retention indices by using observed data from a set of diverse organic compounds. Our database contains observed retention indices for over 35,000 different molecules. These were measured on capillary or packed columns with polar and nonpolar (or slightly polar) stationary phases under isothermal or nonisothermal conditions. ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Predicting financial statement fraud using fuzzy neural networks
Fraud is a common phenomenon in business, and according to Section 24 of the Iranian Auditing Standards, it is the fraudulent act of one or more managers, employees, or third parties to derive unfair advantage and any intentional or unlawful conduct. Financial statements are a means of transmitting confidential management information about the<br ...
متن کاملPredicting Runtime Distributions using Deep Neural Networks
Many state-of-the-art algorithms for solving hard combinatorial problems include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance, across runs with different pseudo-random number seeds. Knowledge about the runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chromatography A
سال: 2021
ISSN: ['1873-3778', '0021-9673']
DOI: https://doi.org/10.1016/j.chroma.2021.462100